Solve the e lation.

1) x !"x 1) #

#) $\frac{1}{"}x$ # $\frac{1}{$}x$ $\frac{\%}{"}$

") &.&'y &.1#!\$&&& y) &.&\$y

Section 2."

Solve.

- %) (o) r time* the *) m o+ *ome n) mber , l) * # i* e-) al to . time* the n) mber min) * #&. (ind the n) mber.
- 5) The length o+ a re/tang) lar room i* +eet longer than tOi/e the Oidth. I+ the room1* , erimeter i* #1& +eet, Ohat are the room1* dimen*ion*2

Section 2.#

Solve the \$orm! Ia \$or the %&eci\$ied variable.

\$) 3 #4 #5 +or 4

') 6
$$\frac{1}{4}$$
 Ah +or A

Section 2."

Solve. I\$ needed(ro! nd to two decimal &lace%.

- .) 7obin got a %8 rai*e in her *alary +rom la*t year. Thi* year *he i* earning 9"',%%.: oO m)/h did *he make la*t year2
-): oO m)/h,)re a/id *ho)ld be mixed Oith \$ gallon* o+ a 5&8 a/id *ol)tion in order to get an .&8 a/id *ol)tion2

Section 2.)

Solve.

1&) I+ 9#&&& i* in; e*ted at 1&8 *im, le ann)al

. etermine whether the &air o\$ line% i% &arallel(&er&endic! lar(or neither. #&) "x %y

Section ".#

Solve.

- ".) @ne n) mber i* 1& le** than a *e/ond n) mber. TOi/e the *e/ond n) mber i* 5 more than 5 time* the +ir*t. (ind the tOo n) mber*.
- Ae; on ,)r/ha*ed ti/ket* to an air *hoO +or . ad) It* and # /hildren. The total /o*t Oa* 91‰. The /o*t o+ a /hild1* ti/ket Oa* 95 le** than the /o*t o+ an ad) It1* ti/ket. (ind the , ri/e o+ an ad) It1* ti/ket and a /hild1* ti/ket.

Section 2."

, ra&h the ine !alit+. %%) 5x y 1%

%1) "x 5y 15

- , ra&h the %ol! tion o\$ the %+%tem o\$ linear ine ! alitie%.
 - $\%\#)\begin{cases} y & x & "\\ y & 5 & x \end{cases}$

Section #.1 Sim&li\$+ the ex&re‰ion. (u, #, #)#

$$\frac{\mathbf{x} \mathbf{x} \mathbf{y} \mathbf{x}}{\mathbf{B}} \int_{\mathbf{x}}^{m} \mathbf{x} \mathbf{y} \mathbf{x}$$

%5) ''m1#n1&

%\$) %y&

Section #.2 3er\$orm the indicated o&eration.

%')!\$y) !%y[#] "y%)

%.)**!**5n^{\$} 1 n⁵ 1") **!**#n^{\$} 'n⁵)

<u>Section #.3</u> M! Iti&I+. %)!"x 1#)!x \$) 5&)!a \$)!a[#] \$a) <u>Section #."</u> M! Iti&I+. 51)! a ')[#] 5#)!5, 1#)!5, 1#)

Section #.#

Sim&li\$+ the ex&re‰ion. Orite the re‰! It ! ‰ing &o‰itive ex&onent% onl+.

Section '.2 Factor com&letel+. I\$ the &ol+nomial cannot be \$actored(write 4&rime.4 **\$#)** x[#] x - 20 **\$"**) "x[#] xy 1#y[#] \$%) x[#] x %5 Section%'.3-'." Factor com&letel+. I\$ the &ol+nomial cannot be \$actored(write 4&rime.4 **\$5) \$y**[#] - 17y + 12 \$\$) 1#y[#] 5%y "& **\$'**)**\$%**x[#] .&x #5 \$.)"x[#] #x . Section '.# Factor com&letel+. I\$ the &ol+nomial cannot be \$actored(write 4&rime.4 \$)#5x[#]% **'**&) x[%].1 '1) x" . "#) 5%x" #5&

Section '.'

Solve the e ! ation.

...) 1
$$\frac{1}{x} \frac{1\#}{x^{\#}}$$

...) $\frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y^{\#}} \frac{\pi}{y^{\#}}$
...) $\frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y^{\#}} \frac{\pi}{y}$
...) $\frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y} \frac{\pi}{y}$

Section)."

Solve.

- I+ three time* a n)mber added to % i* di; ided by the n)mber, I)* 11, the re*)It i* +o)r third*. (ind the n)mber.
- #) Mark /an +ini*h a land*/a, ing &b in # ho)r*,
 Ohile it take* 7a/hel " ho)r* to +ini*h the *ame &b. I+ Mark and 7a/hel Oill Oork together on the &b, and the /o*t o+ labor i* 9\$&, er ho)r,
 Ohat *ho)Id the labor e*timate be2 !7o)nd to the neare*t /ent, i+ ne/e**ary.)
- ") A /ar tra; el* && mile* on le; el terrain in the *ame amo)nt o+ time it tra; el* 1\$& mile* on mo)ntaino)* terrain. I+ the rate o+ the /ar i* "& mile*, er ho)r le** in the mo)ntain* than on le; el gro)nd, +ind it* rate in the mo)ntain*.

Section).) Sim&li\$+.

5)
$$\frac{\frac{1\&}{a}}{\frac{1\&}{a}}$$
 1& ...

Section 10.1 Find the root. A[%]! me that all variable% re&re^{*}ent nonnegative real n! mber[%].

Section 10.2

/%e radical notation to write the ex&re‱ion. Sim&li\$+ i\$
&o‰ible.

1&1) 1\$^{1D#}

Orite with &o%itive ex&onent%. Sim&li\$+ i\$ &o%ible. 1&#) #5 "D#

Section 10.3

Sim&li\$+ the radical ex&re‰ion. A‰! me that all variable% re&re‰ent &o%itive real n! mber%.

$$1\&5)\sqrt{\frac{.\&x^{\#}y}{\%}}$$

Section 10."

Add or %! btract. A%%! me all variable% re&re%ent &o%itive real n! mber%.

M! Iti&I+(and then %im&Ii\$+ i\$ &o%%ible. 111) $\sqrt{5!}\sqrt{11} \sqrt{5}$

, , , , , ,

Section 10.#

Rationali8e the denominator and %im&li\$+.

Orite the con9! gate o\$ the ex&re‰ion. 11%) $.\sqrt{5}$ 11 \sqrt{y}

Rationali8e the denominator and %im&li\$+.

115)
$$\frac{\sqrt{5}}{\sqrt{5}} \frac{\sqrt{\$}}{\sqrt{\$}}$$

Section 10."

Solve.

- 11\$) \%x \$ ***** &
- 11') $\sqrt{5x}$ 11 5 x
- 11.) =/ott *et), a ; olleyball net in hi* ba/kyard.
 @ne o+ the , ole*, Ohi/h +orm* a right angle
 Oith the gro)nd, i* ' +eet high. To *e/) re the , ole, he atta/hed a ro, e +rom the to, o+ the , ole to a *take " +eet +rom the bottom o+ the , ole. To the neare*t tenth o+ a +oot, +ind the length o+ the ro, e.

$$\frac{\text{Section 10.})}{\text{Orite in term%o$ i.}}$$
11) $\sqrt{1$}$

3er\$orm the indicated o&eration. **O**rite the re%! It in the \$orm a + bi.

1##) <u>· "i</u> % #i

Section 11.2

/%e the !adratic \$orm! la to %olve the e !ation.

$$x = \frac{-b \pm \sqrt{b^2 - "ac}}{2a}$$
1#") x[#] 1%x "% &

Solve.

1#5) A ball i* throOn doOnOard Oith an initial ; elo/ity o+ #. meter* , er *e/ond +rom a /li++ that i* & meter* high. The height o+ the ball i* gi; en by the -)adrati/ e-)ation

h %.t[#] #.t