Trigonometry (MAC 1114)

Review Problems for Final Exam

- 1. Covert each of the following degree measures to radians. Leave answers as multiple of % a) 135° b) 12° c) -315°
- 2. Covert each of the following degree measures to degrees. a) $\frac{7\%}{6}$ b) $\frac{11\%}{3}$ a) 5 radians
- 3. The terminal side of angle Ł in standard position goes through (-3, -4). Find the values of the six trigonometric functions of Ł.
- 4. Draw 135° in standard position. Find a point on the terminal side and then find sin 135°, cos 135°, tan 135° without using a calculator.

- 16. Find the domain, range, period, and amplitude of each of the following functions. a) $y = \sin x$ b) $y = \cos x$ c) $y = \tan x$ d) $y = \csc x$ e) $y = \sec x$ f) $y = \cot x$.
- 17. Find the amplitude, period, and phase shift of the function, and sketch the graph of one compete period. a) $y = -\sin 3x$ b) $y = \cos \left(x \frac{9}{2}\right) + 1$

18. Evaluate the exact values of the following without a calculator. a) $\tan(\cos^{-1}(\frac{2}{7}))$ b) $\csc(\tan^{-1}(\frac{3}{4}))$

19. True or False:a) $sin (- \xi) = -sin \xi$ b) $sec (-\xi) = sec \xi$ c) $tan (-\xi) = tan \xi$ d) $cot \xi = \frac{cos \xi}{sin \xi}$ e) $sin \xi = \frac{1}{sec \xi}$ f) $sec \xi = \frac{adjacent}{hypotenuse}$ g) $1 + cot^2 \xi = csc^2 \xi$ h) $tan \xi = \frac{adjacent}{opposite}$

20. Fill in the blanks without using a calculator:

a) $\tan 53^\circ = \cot$	b) -225° is in quadrant		
c) cos is positive in QI and	d) tan is positive in QI and		
e) $1 + \tan^2 k = $	f) $1 - \sin^2 k = $	g) csc \pounds =	$\frac{1}{?}$

Verify the following identities.

21. $\frac{1}{1} \frac{\cos}{\cos} = (\csc \cot)$ 22. $\frac{\cos}{\sin} = \sin$	cos
--	-----

Find the missing parts of each of the following triangles.

39. $a = 39 \text{ cm}, C = 32^{\circ}, B = 110^{\circ}$ 40. $b = 100 \text{ ft}, c = 60 \text{ ft}, \text{ and } C = 28^{\circ}$ 41. $a = 16 \text{ m}, c = 7 \text{ m}, B = 95^{\circ}$ 42. a = 15 ft, b = 25 ft, c = 28 ft

Find the area of each of the following triangles: 43. a = 4, $A = 40^{\circ}$, $B = 60^{\circ}$ 44. a = 76.3 ft, b = 109 ft, c = 98.8 ft

Eliminate the parameter t from each of the following parametric equations. 45. $x = 3 \sin t$ and $y = 4 \cos t$ 46. $x = \sec t$ and $y = \tan t$ 47. $x = 4 \sin t - 5$ and $y = 4 \cos t - 3$ 48. $x = 5 \sin t$ and $y = -2 \sin t$

49. Write the following complex number in trigonometric form, with k between 0 and 2% $4\sqrt{3} - 4i$

50. Given $z_1 = 3(\cos 60 \quad \sin 60)$ and $z_2 = 2(\cos 90 \quad \sin 90)$, find $z_1 z_2$ and z_1/z_2 .